Identifying Constant of Proportionality (Tables)
Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Answers

Ex)

Chocolate Bars (x)	6	10	4	7	5
Calories (y)	2,376	3,960	1,584	2,772	1,980

Every chocolate bar has 396 calories.
1)

Pieces of Chicken (x)	6	7	8	9	2
Price in dollars (y)	12	14	16	18	4

For each piece of chicken it costs _ dollars.
2)

Pounds of Beef Jerky (x)	3	7	8	9	4
Price in dollars (y)	30	70	80	90	40

For every pound of beef jerky it cost __ dollars.
3)

Time in minute (x)	5	7	10	2	9
Distance traveled in meters (y)	95	133	190	38	171

Every minute __ meters are travelled.
4)

Cans of Paint (x)	10	7	3	8	2
Bird Houses Painted (y)	50	35	15	40	10

For every can of paint you could paint _ bird houses.
5)

Glasses of Lemonade (x)	3	6	10	5	8
Lemons Used (y)	15	30	50	25	40

For every glass of lemonade there were _ lemons used.
6)

Concrete Blocks (x)	8	2	7	9	6
weight in kilograms (y)	80	20	70	90	60

Every concrete block weighs __ kilograms.

7) | Boxes of Candy (x) | 9 | 8 | 6 | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pieces of Candy (y) | 180 | 160 | 120 | 40 | 80 |

For every box of candy you get \qquad pieces.
8)

Lawns Mowed (x)	5	10	9	8	7
Dollars Earned (y)	220	440	396	352	308

For every lawn mowed _ dollars were earned.
Ex. \qquad $y=396 x$

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$

Ex)

Chocolate Bars (x)	6	10	4	7	5
Calories (y)	2,376	3,960	1,584	2,772	1,980

Every chocolate bar has 396 calories.
1)

Pieces of Chicken (x)	6	7	8	9	2
Price in dollars (y)	12	14	16	18	4

For each piece of chicken it costs $\underline{2}$ dollars.
2)

Pounds of Beef Jerky (x)	3	7	8	9	4
Price in dollars (y)	30	70	80	90	40

For every pound of beef jerky it cost $\underline{10}$ dollars.
3)

Time in minute (x)	5	7	10	2	9
Distance traveled in meters (y)	95	133	190	38	171

Every minute 19 meters are travelled.
4)

Cans of Paint (x)	10	7	3	8	2
Bird Houses Painted (y)	50	35	15	40	10

For every can of paint you could paint $\underline{5}$ bird houses.
5)

Glasses of Lemonade (x)	3	6	10	5	8
Lemons Used (y)	15	30	50	25	40

For every glass of lemonade there were 5 lemons used.
6)

Concrete Blocks (x)	8	2	7	9	6
weight in kilograms (y)	80	20	70	90	60

Every concrete block weighs 10 kilograms.

7) | Boxes of Candy (x) | 9 | 8 | 6 | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pieces of Candy (y) | 180 | 160 | 120 | 40 | 80 |

For every box of candy you get 20 pieces.
8)

Lawns Mowed (x)	5	10	9	8	7
Dollars Earned (y)	220	440	396	352	308

For every lawn mowed 44 dollars were earned.

Ex. \qquad $y=396 x$

1. \qquad $y=2 x$
2. $y=10 x$
3. $y=19 x$
4. $\quad \mathbf{y}=\mathbf{5 x}$
5. $\quad \mathbf{y}=5 \mathrm{x}$
6. $\mathbf{y}=10 \mathrm{x}$
7. $\mathbf{y}=20 \mathrm{x}$
8. $\quad \mathbf{y}=\mathbf{4 4 x}$
